
Asun®
• microsystems

Progratntner's Reference Manual
for Curses on the Sun Workstation®

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Acknowledgements
This manual was derived from the paper entitled Curses - A Screen Updating and Cursor Movement
Library Package by Ken Arnold, University of California at Berkeley.

This package would not exist without the work of Bill Joy, who, in writing his editor, created the capabil­
ity to generally describe terminals, wrote the routines which read this database, and, most importantly,
those which implement optimal cursor movement, which routines were simply lifted nearly intact. Doug
Merritt and Kurt Shoens also were extremely important, as were both willing to waste time listening to
Ken Arnold rant and rave. The help and/or support of Ken Abrams, Alan Char, Mark Horton, and Joe
Kalash, was, and is, also greatly appreciated.

Copyright © 1985, 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

1.1. Overview .. 3

1.2. Tenninology ... 3

Cursor Addressing Conventions ... 4

1.3. Compiling Things .. 4

1.4. Screen Updating ... 4

1.5. Naming Conventions ... 5

Chapter 2 Variables ... 9

Chapter 3 Programming Curses ... 13

3.1. Starting up .. 13

3.2. The Nitty-Gritty .. 13

Output .. 13

Input .. 14

Miscellaneous ... 14

3.3. Finishing up .. 14

Chapter 4 Cursor Motion Optimization: Standing Alone 17

4.1. Tenninal Infonn.ation .. 17

4.2. Movement Optimizations, Of, Getting Over Yonder 18

Chapter 5 Curses Functions .. 21

5.1. Output Functions ... 21

addch and waddch - Add Character to Window............................ 21

- iii-

Contents Continued

addstr and waddstr - Add String to Window............................. 21

box - Draw Box Around Window .. 21

clear and wclear - Reset Window ... 22

clearok - Set Clear Flag .. 22

clrtobot and wclrtobot - Clear to Bottom 22

clrtoeol and wclrtoeol - Clear to End of Line 22

delch and wdelch - Delete Character ... 22

deleteln and wdeleteln - Delete Current Line 23

erase and werase - Erase Window ... 23

insch and winsch - Insert Character ... 23

insertln and winsertln - Insert Line .. 23

move and wmove - Move .. 23

over la y - Overlay Windows .. 24

overwr i te - Overwrite Windows .. 24

printwand wprintw -Print to Window... 24

refresh and wrefresh - Synchronize ... 24

standout and wstandout - Put Characters in Standout
Mode .. 24

5.2. Input Functions ... 25

crmode and nocrmode - Set or Unset from cbreak mode 25

echo and noecho - Turn Echo On or Off ... 25

getch and wgetch -Get Character from Terminal...................... 25

getstr and wgetstr - Get String from Terminal....................... 25

rawand noraw-TumRaw Mode On or Off................................ 25

scanwand wscanw - Read String from Terminal.......................... 26

5.3. Miscellaneous Functions ... 26

delwin -Delete a Window ... 26

endw in - Finish up Window Routines ... 26

get yx - Get Current Coordinates .. 26

inch and winch - Get Character at Current Coordinates 26

ini t s cr - Initialize Screen Routines ... 26

leaveok-SetLeaveCursorFlag .. 27

longname - Get Full Name of Terminal .. 27

-iv-

Contents Continued

mvwin - Move Home Position of Window... 27

newwin - Create a New Window ... 27

nl and nonl - Tum Newline Mode On or Off 27

scrollok - Set Scroll Flag for Window .. 28

touchwin - Indicate Window Has Been Changed 28

subwin - Create a Subwindow ... 28

un ct r 1 - Return Representation of Character 28

5.4. Details .. 28

get tmode - Get tty Statistics .. 28

mvcur - Move Cursor ... 28

scroll - Scroll Window .. 29

savettyand resetty - Save and Reset tty Flags 29

setterm - Set Tenninal Characteristics ... 29

tstp .. 29

Appendix A Capabilities from termcap .. 33

A.I. Disclaimer ... 33

A.2. Overview ... 33

A.3. Variables Set By settenn() .. 34

AA. Variables Set By gettmodeO ... ,.............. 35

Appendix B The WINDOW structure ... 39

Appendix C Examples ... 43

-v-

Tables

Table 1-1 Description of Terms ... 4

Table 2-1 Variables to Describe the Terminal Environment 9

Table A-I Variables Set by settermO .. 34

Table A-2 Variables Set By gettmodeO .. 35

-vii-

1
Introduction

Introduction ... 3

1.1. Overview .. 3

1.2. Terminology ~.. 3

Cursor Addressing Conventions ... 4

1.3. Compiling Things .. 4

1.4. Screen Updating ... 4

1.5 . Naming Conventions ... 5

1.1. Overview

1.2. Terminology

1
Introduction

CURSES is a Library Package for:

o Updating a screen with reasonable optimization,

o Getting input from the terminal in a screen-oriented fashion, and

o Moving the cursor optimally from one point to another, independent of the
two previous functions.

These routines all use the termcap database to describe the capabilities of the ter­
minaL

In making available the generalized terminal descriptions in termcap, much
information was made available to the programmer, but little work was taken out
of one's hands. CURSES helps the programmer perform the required functions,
those of movement optimization and optimal screen updating, without doing any
of the dirty work, and (hopefully) with nearly as much ease as is necessary to
simply print or read things.

The CURSES package is split into three parts:

1. Screen updating· without user input;

2. Screen updating with user input; and

3. Cursor motion optimization.

It is possible to use the motion optimization without using either of the other
two, and screen updating and input can be done without any programmer
knowledge of the motion optimization, or indeed the termcap database itself.

In this document, the following terminology is used with reasonable consistency:

~\sun ,~ microsystems
3 B of 15 February 1986

4 Curses Reference Manual

Table 1-1 Description of Terms

Cursor Addressing
Conventions

1.3. Compiling Things

1.4. ScreenUpdating

Term Description

window An internal representation containing an image of what a section of
the terminal screen may look like at some point in time. This
subsection can either encompass the entire terminal screen, or any
smaller portion down to a single character within that screen. Note
that the term window is used elsewhere in the Sun system manuals
when describing the window management packages for driving the
bitmapped screens. CURSES windows bear little, if any,
resemblance to the window system concepts.

terminal Sometimes called terminal screen. The package's idea of what the
terminal's screen currently looks like, that is, what the user sees
now. This is a special screen:

screen This is a subset of windows which are as large as the terminal
screen, that is, they start at the upper left hand comer and
encompass the lower right hand comer. One of these, stdscr, is
automatically provided for the programmer.

The CURSES iibrary routines address positions on a screen with the y coordinate
first and the x coordinate second. This follows the convention of most terminals
that address the screen in row ,column order. The reader should note this con­
vention.

To use the CURSES library, -it is necessary to have certain types and variables
defined. Therefore~ the programmer must have a line:

#include <curses.h>

at the top of the program source. The header file <curses .h> needs to include
<sgtty.h >, so one should not do so oneselfl.

Also, compilations should have the following form:

tutorial% cc [C .. compiler options] filename .•. -lcurses -ltermlib

To update the. screen optimally, it is necessary for the routines to know what the
screen currently looks like and what the programmer wants it to look like next.
For this purpose, a data type (structure) named WINDOW is defined which
describes a windowimage to the routines, including its starting position on the
screen (the (y, x) coordinates of the upper left hand comer) and its size. One of

1 The screen package also uses the Standard 110 library, so <curses.h> includes <stdio.h>. It is redundant
(but hannless) for the programmer to include <stdio.h> too.

~\sun ~~ microsystems
B of 15 February 1986

1.5. Naming Conventions

Chapter 1 - Introduction 5

these (called curser for current screen) is a screen image of what the terminal
currently looks like. Another screen (called stdscr, for standard screen) is pro­
vided by default to make changes on.

A window is a purely internal representation. It is used to build and store a
potential image of a portion of the terminal. It doesn't bear any necessary rela­
tion to what is really on the terminal screen. It is more like an array of characters
on which to make changes.

When one has a window which describes what some part the terminal should
look like, the routine refresh () (or wrefresh () if the window is not
sulser) is called. refresh () makes the terminal, in the area covered by the
window, look like that window. Note, therefore, that changing something on a
window does not' change the terminal' . Actual updates to the terminal screen
are made only by calling refresh () or wrefresh (). This allows the pro­
grammer to maintain several different ideas of what a portion of the terminal
screen should look like. Also, changes can be made to windows in any order,
without regard to motion efficiency. Then, at will, the programmer can effec­
tively say 'make it look like this,' and let the package worry about the best way
to do this.

As hinted above, the routines can use several windows, but two are automatically
given: curser, which knows what the terminal looks like, and stdscr, which is
what the programmer wants the terminal to look like next. The user should never
really access curser directly. Changes should be made to the appropriate screen,
and then the routine refresh () (or wrefresh (» should be called.

Many functions are set up to deal with stdscr as a default screen. For example,
to add a character to stdscr, one calls addch () with the desired character. If a
different window is to be used, the routine waddch () (for window-specific
addch ()) is provided2. This convention of prepending function names with a
'w' when they are to be applied to specific windows is consistent. The only rou­
tines which do not do this are those to which a window must always be specified.

To move the current (y, x) coordinates from one point to another, the routines
move () and wmove () are provided. However, it is often desirable to first
move and then perform some 110 operation. To avoid clumsiness, most 110 rou­
tines can be preceded by the prefix 'mv' and the desired (y, x) coordinates then
can be added to the arguments to the function. For example, the calls

move(¥, x);
addch(ch) ;

can be replaced by

mvaddch(y, x, ch);

and

2 Actually, addch () is really a #define macro with arguments, as are most of the "functions" which deal
with stdscr as a default

~\sun ,~ microsystems
B of 15 February 1986

6 Curses Reference Manual

wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x)
coordinates. If such pointers are needed, they are always the first parameters
passed.

~\sun ,~ microsystems
B of 15 February 1986

2
Variables

Variables ... 9

Table 2-1

2
Variables

Many variables that describe the terminal environment are available to the pro­
gramme~ 111ey are:

Variables to Describe the Terminal Environment

Type

WINDOW *
WINDOW *
char *

bool

char *
int
int
int
int

Name

curser
stdscr
Def term

My_term

ttytype
LINES
eOLS
ERR
OK

Description

current version of the screen (terminal screen).
standard screen. Most updates are done here.
default terminal type if type cannot be
determined
use the terminal specification in De! _term as
terminal, irrelevant of real terminal type
full name of the current terminal.
number of lines on the terminal
number of columns on the terminal
error flag returned by routines on a fail.
error flag returned by routines when things go
right.

111ere are also several #define constants and types which are of general useful­
ness:

reg

bool

TRUE

FALSE

storage class 'register' (for example, reg int i;)

boolean type, actually a 'char' (for example, bool donei t;)

boolean 'true' flag (1).

boolean 'false' flag (0).

~\sun ~~ microsystems
9 B of 15 February 1986

3
Programming Curses

Programming Curses .. 13

3.1. Starting up .. 13

3.2. The Nitty-Gritty .. 13

Output .. 13

Input .. 14

Miscellaneous ... 14

3.3. Finishing up .. 14

3.1. Starting up

3.2. The Nitty-Gritty
Output

3
Programming Curses

This is a description of how to actually use the screen package. In it, we assume
all updating, reading, and so on, is applied to stdscr. All instructions will work
on any window, by changing the function name and parameters as mentioned in
chapter 1.

To use the screen,package, the routines must know about terminal characteristics,
and the space for curser and stdscrmust be allocated. These functions are per­
formed by ini tscr (). Since it must allocate space for the windows, it can
overflow core when attempting to do so. On this rather rare occasion,
initscr () returns ERR. initscr () must always be called before any of
the routines which affect windows are used. If it is not, the program will core
dump as soon as either curser or stdscr are referenced. However, it is usually
best to wait to call it until after you are sure you will need it, like after checking
for startup errors. Terminal status changing routines like nl () and crmode ()
should be called after initscr ().

Now that the screen windows have been allocated, you can set them up for the
run. If you want to, say, allow the window to scroll, use scrollok (). If you
want the cursor to be left after the last change, use leaveok (). If this isn't
done, refresh () moves the ,cursor to the window's current (y, x) coordinates
after updating it. New windows of your own can be created, too, by using the
functions newwin () and subwin () .delwin ,() gets rid of old windows. If
you wish to change the official size of the terminal by hand, just set the variables
liNES and COLS to be what you want, and then call initscr (). This is best
done before, but can be done either before or after, the first call to ini tscr () ,
as italways deletes any existing stdscr and/or curser before creating new ones.

Now that we have set things up, we will want to actually update the terminal.
The basic ,functions used to change what appears on a window are addch () and
move (). addch () adds a character at the current (y, x) coordinates, returning
ERR if it would cause the window to illegally scroll, that is, printing a character
in the lower right-hand comer of a terminal which automatically scrolls if scrol­
ling is not allowed. move () changes the current (y, x) coordinates to whatever
you want them to be. It returns ERR if you try to move off the window when
scrolling is not allowed. As mentioned above, you can combine the two into
mvaddch () to do both things in one fell swoop .

• \sun ,~ mlcrosystems
13 B of 15 February 1986

14 Curses Reference Manual

Input

Miscellaneous

3.3. Finishing up

The other output functions, such as a ddst r () and .pr in t w () , all call
addch () to add characters to the window.

After you have put on the window what you want there, when you want the por­
tion of the terminal covered by the window to be made to look like it, you must
call refresh (). To· optimize finding changes, refresh () assumes that any
part of the window not changed since the last refresh () of that window has
not been changed on the terminal, that is, that you have not refreshed a portion of
the terminal with an overlapping window. If this is not the case, the routine
touchwin () is provided to make it look like the entire window has been
changed, thus making refresh () check the whole subsection of the terminal
for changes.

If you call wrefresh () with curser, it will make the screen look like curser
thinks it looks like. This is useful for implementing a command to redraw the
screen in case it get messed up.

Input is essentially a mirror image of output. The complementary function to
addch () is getch () which, if echo is set, calls addch () to echo the charac­
ter. Since the screen package needs to know what is on the terminal at all times,
if characters are to be echoed, the tty must be in raw or cbreak mode. If it is
not, getch () sets it to be cbreak, reads in the character, and then resets the
mode of the terminal to what it was before the call.

All sorts of functions exist for maintaining and changing information about the
windows. For the most part, the descriptions in section 5.4. should suffice.

To do certain optimizations, and, on some terminals, to work at all, some things
must be done before the screen routines start up. These functions are performed
in getttmode () and setterm (), which are called by initscr (). To
clean up after the routines, the routine endwin () is provided. It restores tty

modes to what they were when initscr () was first called. Thus, anytime
after the call to initscr, endwin () should be called before exiting.

~\sun ,~ microsystems
B of 15 February 1986

4
Cursor Motion Optimization: Standing
Alone

Cursor Motion Optimization: Standing Alone ... 17

4.1. TeI1llinal InfoI1llation .. 17

4.2. Movement Optimizations, or, Getting Over Yonder 18

4.1. Terminal Information

4

Cursor Motion Optimization: Standing
Alone

It is possible to use the cursor optimization functions of this screen package
without the overhead and additional size of the screen updating functions. The
screen updating functions are designed for uses where parts of the screen are
changed, but the overall image remains the same. Certain other programs will
find it difficult to use these functions in this manner without considerable
unnecessary program overhead. For such applications, such as some 'crt hacks,3
and optimizing cat (1)-type programs, all that is needed is the motion optimiza­
tions. This, therefore, is a description of what goes on at the lower levels of this
screen package. The descriptions assume a certain amount of familiarity with
programming problems and some finer points of C. None of it is terribly
difficult, but you should be forewarned.

To use a terminal's features to the best of a program's abilities, you must first
know what they are. The termcap database describes these, but a certain amount
of decoding is necessary, and there are, of course, both efficient and inefficient
ways of reading them in. The algorithm that CURSES uses is taken from vi and is
efficient. It reads them into a set of variables whose names are two uppercase
letters with some mnemonic value. For example, H 0 is a string which moves
the cursor to the "home" position4. As there are two types of variables involving
ttys, there are two routines. The first, get tmode () , sets some variables based
upon the tty modes accessed by gtty (2) and stty (2). The second, setterm () ,
does a larger task by reading in the descriptions from the termcap database. This
is the way these routines are used by ini tscr () :

if (isatty(O» {
gettmode();

else

if (sp=getenv ("TERM"))
setterm (sp) ;

setterm(Def_term) ;
_puts(TI);
_puts (VS) ;

3 Graphics programs designed to run on character-oriented terminals.

4 These names are identical to those variables used in the /etc/termcap database to describe each capability.
See Appendix A for a complete list of those read, and termcap(5) for a full description.

~\sun ~~ microsystems
17 B of 15 February 1986

18 Curses Reference Manual

4.2. Movement
Optimizations, or,
Getting Over Yonder

is at t y () checks to see if file descriptor 0 is a terminalS. If it is,
get tmode () sets the terminal description modes from a gtty (2). getenv ()
is then called to get the name of the terminal, and that value (if there is one) is
passed to setterm () , which reads in the variables from termcap associated
with that terminal. getenv () returns a pointer to a string containing the name
of the terminal, which we save in the character pointer sp. If is at t y () returns
false, the default terminal Dei term is used. The Tl and VS sequences initialize
the terminal. yuts () is a macro which uses tputs () (see termcap (3X» to
put out a string. It is these things which endwin () undoes.

Now that we have all this useful information, it would be nice to do something
with it. The most difficult thing to do properly is motion optimization. When
you consider how many different features various terminals have (tabs, backtabs,
non-destructive space, home sequences, absolute tabs, ...) you can see that
deciding how to get from here to there can be a decidedly non-trivial task.

After using gettmode () and setterm () to get the terminal descriptions, the
function mvcur () deals with this task. Its usage is simple: you simply tell it
where you are now and where you want to go. For example

mvcur(O, 0, LINES/2, COLS/2)

would move the cursor from the home position (0, 0) to the middle of the screen.
If you wish to force absolute addressing, you can use the function tgoto ()
from the termcap (3X) routines, or you can tell mvcur () that you are impossi­
bly far away. For example, to absolutely address the lower left hand comer of
the screen from anywhere just claim that you are in the upper right hand comer:

mvcur(O, COLS-l, LINES-l, 0)

5 isat ty () is defined in the default C library function routines. It does a gtty(2) on the file descriptor and
checks the return value.

~\sun ,~ microsystems
B of 15 February 1986

5
Curses Functions

Curses Functions ... 21

5.1. Output Functions ... 21

addch and waddch - Add Character to Window............................ 21

addstr and waddstr - Add String to Window............................. 21

box - Draw Box Around Window .. 21

clear and wclear - Reset Window... 22

clearok - Set Clear Flag .. 22

clrtobot and wclrtobot - Clear to Bottom 22

clrtoeol and wclrtoeol- Clear to End of Line 22

delch and wdelch - Delete Character ... 22

deleteln and wdeleteln - Delete Current Line 23

erase and werase - Erase Window... 23

insch and winsch - Insert Character ... 23

insertln and winsertln - Insert Line .. 23

move and wmove - Move .. 23

over la y - Overlay Windows .. 24

overwrite - Overwrite Windows .. 24

printwand wprintw -Print to Window... 24

refresh and wrefresh - Synchronize ... 24

standout and wstandout - Put Characters in Standout
Mode .. 24

5.2. Input Functions ... 25

crmode and nocrmode - Set or Unset from cbreak mode 25

echo and noecho -Turn Echo On or Off ... 25

getchand wgetch - Get Character from Terminal...................... 25

getstr and wgetstr - Get String from Terminal....................... 25

rawand noraw-TumRaw Mode On or Off................................ 25

scanwand wscanw - Read String from Terminal.......................... 26

5.3. Miscellaneous Functions ... 26

delw.in - Delete a Window... 26

endwin - Finish up Window Routines ... 26

getyx - Get Current Coordinates .. 26

inch and winch- Get Character at Current Coordinates 26

initscr -Initialize Screen Routines ... 26

leaveok ~ Set Leave Cursor Flag .. 27

longname -Get Full Name of Terminal .. 27

mvwin - Move Home Position of Window ... 27

newwin - Create a New Window... 27

nl and nonl - Tum Newline Mode On or Off 27

scrollok - Set Scroll Flag for Window.. 28

touchwin - Indicate Window Has Been Changed 28

subwin - Create a Subwindow ... 28

unctrl- Return Representation of Character 28

5.4. Details .. 28

get tmode - Get tty Statistics .. 28

mvcur - Move Cursor ... 28

. scroll - Scroll Window .. 29

savettyand resetty - Save and Reset tty Flags 29

setterm- Set Terminal Characteristics ... 29

tstp .. 29

5.1. Output Functions
addch and waddch - Add
Character to Window

addstr and waddstr­
Add String to Window

box - Draw Box Around
Window

5
Curses Functions

In the following definitions, 't' means that the 'function' is really a #de£ ine
macro with arguments. This means that it will not show up in stack traces in the
debugger, or, in the case of such functions as addch () , it will show up as its
'w' counterpart. The arguments are given to show the order and type of each.
Their names are not mandatory,just suggestive.

addch(ch) t
char Chi

waddch(win, ch)
WINDOW *wini
char Chi

Add the character ch on the window at the current (y, x) co-ordinates. If the
character is a newline ('\n') the line is cleared to the end, and the current (y, x)
co-ordinates are changed to the beginning of the next line if newline mapping is
on, or to the next line at the same x co-ordinate if it is off. A return ('\r') moves
to the beginning of the line on the window. Tabs ('\t') are expanded into spaces
in the normal tabstop positions of every eight characters. This returns ERR if it
would cause the screen to scroll illegally.

addstr(st) t
char *stri

waddstr(win, str)
WINDOW *wini
char *stri

Add the string pointed to by str on the window at the current (y, x) co-ordinates.
This returns ERR if it would cause the screen to scroll illegally. In this case, it
puts on as much as it can.

box (win, vert, hor)
WINDOW *wini
char vert, hori

Draws a box around the window using vert as the character for drawing the verti­
cal sides, and hor for drawing the horizontal lines. If scrolling is not allowed,

21 B of 15 February 1986

22 Curses Reference Manual

clear and wclear -Reset
Window

clearok - Set Clear Flag

clrtobot and wclrtobot
- Clear to Bottom

clrtoeoland wclrtoeol
- Clear to End of Line

delch and wdelch­
Delete Character

and the window encompasses the lower right-hand comer of the tenninal, the
comers are left blank to avoid a scroll.

clear () t

wclear(win)
WINDOW *wini

Resets the entire window to blanks. If win is a screen, this sets the clear flag,
which sends a clear-screen sequence on the next refresh () call. This also
moves the current (y, x) co-ordinates to (0,0).

clearok(scr, boolf) t
WINDOW *scri
bool boolfi

Sets the clear flag for the screen ser. If boolf is TRUE, this forces a clear-screen
to be printed on the next refresh (), or stop it from doing so if boolf is
FALSE. This only works on screens, and, unlike clear (), does not alter the
contents of the screen. If ser is curser, the next refresh () call causes a
clear-screen, even if the window passed to refresh () is not a screen.

clrtobot () t

wclrtobot(win)
WINDOW *wini

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This
does not force a clear-screen sequence on the next refresh under any cir­
cumstances. This has no associated 'mv' command.

clrtoeol() t

wclrtoeol(win)
WINDOW *wini

Wipes the window clear from the current (y, x) co-ordinates to the end of the
line. This has no associated 'mv' command.

delch ()

wdelch(win)
WINDOW *wini

Delete the character at the current (y, x) co-ordinates. Each character after it on
the line shifts to the left, and the last character becomes blank.

B of 15 February 1986

deletelnand wdeleteln
- Delete Current Line

erase and werase - Erase
Window

insch and winsch­
Insert Character

insertlnand winsertln
- Insert Line

move and wmove - Move

deleteln ()

wdeleteln(win)
WINDOW *wini

Chapter 5 - Curses Functions 23

Delete the current line. Every line below the current one moves up, and the bot­
tom line becomes blank. The current (y, x) co-ordinates remains unchanged.

erase () t

werase(win)
WINDOW *win;

Erases the window to blanks without setting the clear flag. This is analagous to
clear () ,except that it never causes a clear-screen sequence to be generated on
a refresh (). This has no associated 'mv' command.

insch(c)
char Ci

winsch(win, c)
WINDOW *wini
char Ci

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right,
and the last character disappears. This returns ERR if it would cause the screen
to scroll illegally.

insertln ()

winsertln(win)
WINDOW *wini

Insert a line above the current one. Every line below the current line is shifted
down, and the bottom line disappears. The current line becomes blank, and the
current (y, x) co-ordinates remains unchanged. This returns ERR if it would
cause the screen to scroll illegally.

move (y, x) t
int y, Xi

wmove(win, y, x)
WINDOW *wini
int y, Xi

Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR

if it would cause the screen to scroll illegally.

~\sun ~~ microsystems
B of 15 February 1986

24 Curses Reference Manual

overlay - Overlay
Windows

overwrite - Overwrite
Windows

pr int wand wpr int w -
Print to Window

refresh and wrefresh­
Synchronize

standout and wstandout
- Put Characters in Standout
Mode

overlay (winl, win2)
WINDOW *winl, *win2;

Overlay win} on win2. The contents of win} , insofar as they fit, are placed on
win2 at their starting (y, x) co-ordinates. This is done non-destructively, that is,
blanks on win} leave the contents of the space on win2 untouched.

overwrite (winl, win2)
WINDOW *winl, *win2;

Overwrite win} on win2. The contents of win} , insofar as they fit, are placed on
win2 at their starting (y, x) co-ordinates. This is done destructively, that is,
blanks on win} become blank on win2 .

printw(fmt, argl, arg2, ...)
char *fmt;

wprintw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

Performs a printf () on the window starting at the current (y, x) co-ordinates.
It uses addstr () to add the string on the window. It is often advisable to use
the field width options ofprintf () to avoid leaving things on the window
from earlier calls. This returns ERR if it would cause the screen to scroll ille­
gally.

refresh () t

wrefresh(win)
WINDOW *win;

Synchronize the terminal screen with the desired window. If the window is not a
screen, only that part covered by it is updated. This returns ERR if it would cause
the screen to scroll illegally. In this case, it updates whatever it can without caus­
ing the scroll.

standout () t

wstandout(win)
WINDOW *win;

standend () t

wstandend(win)
WINDOW *win;

Start and stop putting characters onto win in standout mode. standout ()
causes any characters added to the window to be put in standout mode on the ter­
minal (if it has that capability). standend () stops this. The sequences SO
and SE (or US and UE if they are not defined) are used (see Appendix A).

B of 15 February 1986

S.2. Input Functions

crmode and nocrmode­
Set or Unset from cbreak
mode

echo and noecho - Turn
Echo On or Off

getch and wgetch - Get
Character from Terminal

getstr and wgetstr­
Get String from Terminal

raw and noraw-Turn
Raw Mode On or Off

crmode () t

nocrmode () t

Set or unset the terminal to/from cbreak mode.

echo () t

noecho () t

Sets the terminal to echo or not echo characters.

getch() t

wgetch(win)
WINDOW *win;

Chapter 5 - Curses Functions 25

Gets a character from the terminal and (if necessary) echos it on the window.
This returns ERR if it would cause the screen to scroll illegally. Otherwise, the
character gotten is returned. If noecho has been set, then the window is left unal­
tered. In order to retain control of the terminal, it is necessary to have one of
noecho, cbreak, or rawmode set. If you do not set one, whatever routine you call
to read characters sets cbreak for you, and then resets to the original mode when
finished.

getstr(st) t
char *str;

wgetstr(win, str)
WINDOW *win;
char *str;

Get a string through the window and put it in the location pointed to by str ,
which is assumed to be large enough to handle it. It sets tty modes if necessary ,
and then calls getch () (or wgetch (win)) to get the characters needed to fill
in the string until a newline or EOF is encountered. The newline stripped off the
string. This returns ERR if it would cause the screen to scroll illegally.

raw () t

noraw () t

Set or unset the terminal to/from raw mode. On version 7 UNIXt systems, this
also turns off newline mapping (see nl ()).

t UNIX is a trademark of AT&T Bell Laboratories.

~\sun ,~ microsystems
B of 15 February 1986

26 Curses Reference Manual

scanwand wscanw-Read
String from Terminal

5.3. Miscellaneous Functions
delwin -Delete a Window

endwin - Finish up Window
Routines

get yx - Get Current
Coordinates

inch and winch - Get
Character at Current
Coordinates

ini t s cr - Initialize Screen
Routines

scanw(fmt, argl, arg2, ...)
char *fmt;

wscanw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

Perform a scanf () through the window usingfmt. It does this using consecu­
tive getch () 's (or wgetch (win) 's). This returns ERR if it would cause the
screen to scroll illegally.

delwin(win)
WINDOW *win;

Deletes the window from existence. All resources are freed for future use by
calloc(3). If a window has a subwin () allocated window inside of it, delet­
ing the outer window does not affect the subwindow, even though this does
invalidate it. Therefore, subwindows should be deleted before their outer win­
dows are.

endwin ()

Finish up window routines before exit. This restores the terminal to the state it
was in before initscr () (or gettmode () and setterm (» was called.
endwin should always be called before exiting. endwin does not itself exit­
this is especially useful for resetting tty stats when trapping rub outs via sig­
nal(2).

getyx(win, y, x) t
WINDOW *win;
int y, x;

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a
macro, not a function, you do not pass the address of y and x .

inch () t

winch (win) t
WINDOW *win;

Returns the character at the current (y, x) co-ordinates on the given window.
This does not make any changes to the window. This has no associated 'mv'

command.

initscr()

Initialize the screen routines. This must be called before any of the screen rou­
tines are used. It initializes the terminal-type data and such, and without it, none
of the routines can operate. If standard input is not a tty, it sets the specifications
to the terminal whose name is pointed to by Del_term (initialy"dumb"). If the

()~!.!! B of 15 February 1986

leaveok - Set Leave
Cursor Flag

longname - Get Full Name
of Terminal

mvwin - Move Home
Position of Window

newwin - Create a New
Window

nl and nonl - Turn
Newline Mode On or Off

Chapter 5 - Curses Functions 27

boolean My _term is true, Def_term is always used.

leaveok(win, boolf) t
WINDOW *wini
bool boolfi

Sets the boolean flag for leaving the cursor after the last change. If boolf is
TRUE, the cursor is left after the last update on the tenninal, and the current
(y, x) co-ordinates for win are changed accordingly. Ifit is FALSE, it is moved
to the current (y, x) co-ordinates. This flag (initially FALSE) retains its value
until changed by the user.

For example, say the current position is (0, 0) and we change the character at
position (5, 10) in the window. After calling .refresh () ,the cursor is either
moved to position (5, 10) (if the flag is TRUE) or the cursor is left at position
(0,0) (if the flag is FALSE).

longname(termbuf, name)
ehar *termbuf, *namei

Fills in name with the long (full) name of the terminal described by the tenncap
entry in termbuf. It is generally of little use, but is nice for telling the user in a
readable fonnat what terminal we think he has. The long name is also available
in the global variable tty type . T ermbuf is usually set via the termlib routine
tgetent ().

mvwin(win, y, x)
WINDOW *wini
int y, Xi

Move the home position of the window win from its current starting coordinates
to (y, x). If that would put part or all of the window off the edge of the terminal
screen, mvwin () returns ERR and does not change anything.

WINDOW *
newwin(lines, eols, begin_y, begin_x)
int lines, eols, begin_y, begin_Xi

Create a new window with lines lines and cols columns starting at position
(beginy, begin_x). If either lines or cols is 0 (zero), that dimension is set to
(LINES -beginy) or (COLS - begin_x) respectively. Thus, to get a new win­
dow of dimensions LINES x COLS, use neww in (0, 0, 0 , 0).

nl () t

nonl () t

Set or unset the terminal to/from nl mode, that is, start/stop the system from map­
ping < carriage-return> to < line-feed>. If the mapping is not done,
refresh (). can do more optimization, so it is recommended, but not required,
that it be turned off.

~\sun ,~ microsystems
B of 15 February 1986

28 Curses Reference Manual

scrollok - Set Scroll Flag
for Window

touchwin - Indicate
Window Has Been Changed

s ubwin - Create a
Subwindow

unctr 1 - Return
Representation of Character

S.4. Details
get tmode - Get tty
Statistics

mvcur - Move Cursor

serollok(win, boolf) t
WINDOW *wini
bool boolfi

Set the scroll flag for the given window. If boolf is FALSE, scrolling is not
allowed. This is its default setting.

touehwin(win)
WINDOW *wini

Make it appear that the every location on the window has been changed. This is
usually only needed for refreshes with overlapping windows.

WINDOW *
subwin(win, lines, eols, begin_y, begin_x)
WINDOW *wini
int lines, eols, begin_y, begin_xi

Create a new window with lines lines and eois columns starting at position
(beginy, begin_x) in the middle of the window win. This means that any
change made to either window in the area covered by the subwindow is made on
both windows. beginy, begin_x are specified relative to the overall screen, not
the relative (0, O) of win . If either lines or eois is 0 (zero), that dimension is set
to (LINES - beginy) or (COLS - begin_x) respectively.

unetrl(eh) t
char Chi

This is actually a debug function for the library, but it is of general usefulness. It
returns a string which is a representation of eh. Control characters become their
upper-case equivalents preceded by a ~ (circumflex character). Other letters
stay just as they are.

gettmode ()

Get the tty stats. This is normally called by initscr () .

mveur(lasty, lastx, newy, newx)
int lasty, lastx, newy, neWXi

Moves the terminal's cursor from (iasty, iastx) to (newy, newx) in an approxima­
tion of optimal fashion. It is possible to use this optimization without the benefit
of the screen routines. With the screen routines, this should not be called by the
user. move () and refresh () should be used to move the cursor position, so
that the routines know what's going on.

B of 15 February 1986

scroll- Scroll Window

savettyand resetty­
Save and Reset tty Flags

setterm - Set Terminal
Characteristics

tstp

scroll (win)
WINDOW *wini

Chapter 5 - Curses Functions 29

Scroll the window upward one line. This is nonnally not used by the user.

savetty () t

resetty () t

savetty () saves the current tty characteristic flags. resetty () restores
them to what sa vet t y () stored. These functions are performed automatically
by initscr () and endwin ().

setterm(name)
char *namei

Set the tenninal characteristics to be those of the tenninal named name. This is
nonnally called by initscr ().

tstp ()

If the new tty (4) driver is in use, this function saves the current tty state and then
puts the process to sleep. When the process gets restarted, it restores the tty state
and then calls wrefresh (curser) to redraw the screen. ini tscr () sets
the signal SIGTSTP to trap to this routine.

,~\sun
,~ microsystems

B of 15 February 1986

A
Capabilities from termcap

Capabilities from termcap ... 33

A.1. Disclaimer ... 33

A.2. Overview ... 33

A.3. Variables Set By setterm() .. 34

A.4. Variables Set By gettmodeO .. 35

A.I. Disclaimer

A.2. Overview

A
Capabilities from termcap

The description of terminals is a difficult business, and we only attempt to sum­
marize the capabilities here. For a full description see the termcap(5) manual
pages.

Capabilities from termcap are of three kinds: string valued options, numeric
valued options, and boolean options. The string valued options are the most
complicated, since they may include padding information.

Intelligent terminals often require padding on intelligent operations at high (and
sometimes even low) speed. This is specified by a number before the string in
the capability, and has meaning for the capabilities which have a P at the front of
their comment. This normally is a number of milliseconds to pad the operation.
In the current system which has no true programmable delays, we do this by
sending a sequence of pad characters (normally nulls, but can be changed -
specified by PC). In some cases,· the pad is better computed as some number of
milliseconds times the number of affected lines (to the bottom of the screen usu­
ally, except when terminals have insert modes which will shift several lines.)
This is specified as, for example, 12* before the capability, to say 12 mil­
liseconds per affected whatever (currently always line). Capabilities where this
makes sense say P*.

~\sun ,~ microsystems
33 B of 15 February 1986

34 Curses Reference Manual

A.3. Variables Set By
settermO

Table A-I Variables Set by setterm()

Type Name Pad

char * AL P*
bool AM

char * BC
bool BS
char * BT P

bool CA
char * CD P*
char * CE P
char * CL P*
char * CM P

char * DC P*
char * DL P*
char * DM
char * DO
char * ED

bool EO
char * EI
char * HO
bool HZ
char * IC P

bool IN
char * 1M
char * IP P*
char * LL
char * MA

bool MI
bool NC
char * ND
bool OS
char PC

char * SE
char * SF P
char * SO
char * SR P
char * TA P

char * TE
char * TI
char * UC
char * UE
boal UL

~\sun ~~ microsystems

Description

Add new blank Line
Automatic Margins
Back Cursor movement
BackSpace works
Back Tab

Cursor Addressable
Clear to end of Display
Clear to End of line
CLear screen
Cursor Motion

Delete Character
Delete Line sequence
Delete Mode (enter)
DOwn line sequence
End Delete mode

can Erase Overstrikes with ' ,
End Insert mode
HOme cursor
HaZeltine - braindamage
Insert Character

Insert-Null blessing
enter Insert Mode (IC usually set, too)
Pad after char Inserted using IM+IE
quick to Last Line, column 0
ctr! character MAp for cmd mode

can Move in Insert mode
No Cr: \r sends \r\n then eats \n
Non-Destructive space
OverStrike works
Pad Character

Standout End (may leave space)
Scroll Forwards
Stand Out begin (may leave space)
Scroll in Reverse
TAb (not "lor with padding)

Terminal address enable Ending sequence
Terminal address enable Initialization
Underline a single Character
Underline Ending sequence
UnderLining works even though lOS

B of 15 February 1986

Table A-I

A.4. Variables Set By
gettmodeO

Table A-2

Appendix A - Capabilities from termcap 35

Variables Set by setterm()-Continued

Type Name Pad Description

char * UP UPline
char * US Underline Starting sequence 7

char * VB Visible Bell
char * VE Visual End sequence
char * VS Visual Start sequence
bool XN a Newline gets eaten after wrap

Names starting with X are reserved for severely nauseous glitches

Variables Set By gettmode()

type

bool
bool
bool

name

NONL
GT
UPPERCASE

description

Term can't hack linefeeds doing a CR
Gtty indicates Tabs
Terminal generates only uppercase letters

7 US and DE. if they do not exist in the tenncap entry. are copied from SO and SE in settermO

~\sun ,~ microsystems
B of 15 February 1986

B
The WINDOW structure

The wrnnow structure ... 39

B
The WINDOW structure

The WINDOW structure is defined as follows:

* define WINDOW struct win st - -

struct win st { -
short _cury, curx; -
short _maxy, _maxx;
short _begy, _begx;
short _flags;
bool clear; -
bool leave; -
bool scroll; -
char **3;
short * firstch; -
short * lastch; -

} ;

* define SUBWIN 01

* define ENDLINE 02

* define FULLWIN 04

* define SCROLL WIN 010 -

* define STANDOUT 0200 -

_cury and _curx are the current (y, x) coordinates for the window. New charac­
ters added to the screen are added at this point. _ maxy and _ maxx are the max­
imum values allowed for (_cury, _curx). _begy and _begx are the starting (y, x)
coordinates on the terminal for the window, that is, the window's home. _cury,
_ curx , _ maxy , and _ maxx are measured relative to (_ begy, _ begx), not the
terminal's home.

_clear tells if a clear-screen sequence is to be generated on the next
refresh () call. This is only meaningful for screens. The initial clear-screen
for the first refresh () call is generated by initially setting clear to be TRUE

for curscr , which always generates a clear-screen if set, irrelevant of the dimen­
sions of the window involved. _leave is TRUE if the current (y, x) coordinates
and the cursor are to be left after the last character changed on the terminal, or
not moved if there is no change. ~scroll is TRUE if scrolling is allowed.

7 All variables not nonnally accessed directly by the user are named with an initial '_' to avoid conflicts
with the user's variables .

• \sun ,~ microsystems
39 B of 15 February 1986

40 Curses Reference Manual

Y is a pointer to an array of lines which describe the tenninal. Thus:

_y [i]

is a pointer to the i th line, and

_y[i] [j]

is the j th character on the i th line.

Jags can have one or more values or'd into it. SUBWIN means that the win-
dow is a subwindow, which indicates to delwin () that the space for the lines
is not to be freed. _ENDLINE says that the end of the line for this window is
also the end of a screen. _ FULLWIN says that this window is a screen.

SCROLLWIN indicates that the last character of this screen is at the lower
right-hand comer of the tenninal; that is, if a character was put there, the tenninal
would scroll. _ STANDOUT says that all characters added to the screen are in
standout mode.

~\sun ,~ microsystems
B of 15 February 1986

c
Examples

Examples ... 43

c
Examples

Here is a simple example of how to use the package.

This example (twinkle) is intended to demonstrate the basic structure of a pro­
gram using the screen updating sections of the package.

This is a moderately simple program which prints pretty patterns on the screen
that might even hold your interest for 30 seconds or more. It switches between
patterns of asterisks, putting them on one by one in random order, and then tak­
ing them off in the same fashion.

* include * include

/*

<curses.h>
<signal.h>

* the idea for this program was a product
* of the imagination of Kurt Schoens. Not
* responsible for minds lost or stolen.
*/

* define * define * define

struct locs
char

} ;

NCOLS 80
NLINES 24
MAXPATTERNS 4

y, X;

typedef struct locs LOCS;

LOCS Layout[NCOLS * NLINES]; /* current board layout */

int Pattern,
Numstars;

main () {

/* current pattern number */
/* number of stars in pattern */

char
int

*getenv();
die () ;

srand (getpid ()) ; /* initialize random sequence */

~\sun ,~ microsystems
43 B of 15 February 1986

44 Curses Reference Manual

initscr();
signal (SIGINT, die);
noecho();
nonlO ;
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

for (;;) {
makeboardO;
puton('*');
puton(' ');

/* make the board setup */
/* put on '*'s */
/* cover up with' 's */

/*
* On program exit, move the cursor to the lower
* left corner by direct addressing, since current
* location is not guaranteed. We lie and say we
* used to be at the upper right corner to guarantee
* absolute addressing.
*/

die () {

/*

signal (SIGINT, SIG_IGN);
mvcur(O, COLS-l, LINES-l, O)i
endwin();
exit(O);

* Make the current board setup. It picks a random
* pattern and calls ison() to determine if the
* character is on that pattern or not.
*/

makeboard ()

/*

reg int
reg LOCS

y, x;
*lPi

Pattern = rand() % MAXPATTERNSi
lp = Layout;
for (y = 0; y < NLINES; y++)

for (x = 0; x < NCOLSi x++)
if (ison(y, x» {

Ip->y = Yi
Ip++->x = x;

Numstars = lp - Layout;

* Return TRUE if (y, x) is on the current pattern.

~~sun ~~ microsystems
B of 15 February 1986

Appendix C - Examples 45

*/
ison(y, x)
reg int y, x; {

switch (Pattern)
case 0: /* alternating lines */

return! (y & 01);
case 1: /* box */

if (x >= LINES && Y >= NCOLS)
return FALSE;

if (y < 3 I I y >= NLINES - 3)
return TRUE;

return (x < 3 II x >= NCOLS - 3);
case 2: /* holy pattern! */

return «x + y) & 01);
case 3: /* bar across center */

return (y>= 9 && Y <= 15);

/* NOTREACHED */

puton(ch)
reg char ch;

reg LOCS *lp;
reg int r;
reg LOCS *end;
LOCS temp;

end &Layout[Numstars];
for (lp = Layout; Ip < end; Ip++) {

r = rand() % Numstars;
temp = *lp;
*lp = Layout [r];
Layout[r] = temp;

for (lp = Layout; Ip < end; lp++)
mvaddch(lp->y, lp->x, ch);
refresh();

~\sun ,~ microsystems
B of 15 February 1986

Index

A
addch,21
addstr,21

B
box, 21

C
clear, 22
clearok,22
clrtobot,22
clrtoeol,22
compiling, 4
crmode, 25
current screen, 5
curses library, 4

D
delch,22
deleteln,23
delwin, 26
detail functions, 28 thru 29

get tmode, 28
mvcur,28
resetty,29
savetty,29
scroll,29
setterm, 29
tstp,29

E
echo, 25
endwin,26
erase, 23

F
functions

details, 28 thru 29
input, 25 thru 26
miscellaneous, 26 thru 28
output, 21 thru 24

G
getch,25
getstr,25
get tmode, 28

-47-

getyx,26

I
inch,26
initscr,26
input functions, 25 thru 26

crmode,25
echo, 25
getch,25
getstr,25
nocrmode, 25
noecho,25
noraw,25
raw, 25
scanw,26
wgetch,25
wgetstr,25
wscanw,26

insch,23
insertln,23

L
leaveok,27
longname,27

M
miscellaneous functions, 26 thru 28

delwin, 26
endwin,26
getyx,26
inch,26
initscr,26
leaveok,27
longname, 27
newwin,27
nl,27
nonl, 27
nvwin,27
scrollok,28
subwin,28
touchwin,28
unctrl,28
winch,26

move,23
mvcur,28

Index Continued

N
newwin,27
nl,27
nocrmode,25
noecho,25
nonl,27
noraw, 25
nvwin,27

o
output functions, 21 thru 24

addch,21
addstr,21
box, 21
clear, 22
clearok,22
clrtobot, 22
clrtoeol,22
delch,22
deleteln,23
erase, 23
insch,23
insertln,23
move, 23
overlay, 24
overwri te, 24
printw,24
refresh, 24
standend, 24
standout, 24
waddch,21
waddstr,21
wclear,22
wclrtobot,22
wclrtoeol,22
wdelch,22
wdeleteln,23
werase,23
winsch,23
winsertln,23
wmove,23
wprintw,24
wrefresh,24
wstandend,24
wstandout,24

overlay, 24
overwrite, 24

p
printw,24

R
raw, 25
refresh,24
resetty,29

S
savetty,29
scanw,26
screen, 3

current, 5

-48-

screen, continued
standard, 5
updating, 4 thru 5

scroll, 29
scrollok,28
setterm, 29
standard screen, 5
standend, 24
standout, 24
subwin,28

T
termcap, 33 thru 35
terminal, 3
terminal screen, 3
touchwin,28
tstp,29

U
unctrl,28
updating screen, 4 thru 5
using curses, 4

W
waddch,21
waddstr,21
wclear,22
wclrtobot, 22
wclrtoeol,22
wdelch,22
wdeleteln, 23
werase,23
wgetch,25
wgetstr,25
winch, 26
window, 3,4
window structure, 39 thru 40

begx,39
-begy,39
-clear, 39
-curx,39
-cury,39
-ENDLINE flag,40
-flags,40
-FULLWIN flag,40
-leave, 39
- maxx, 39
- maxy, 39
-scroll, 39
-SCROLLWIN flag,40
-STANDOUT flag,40
- SUBWIN flag, 40
-:],40

winsch,23
winsertln,23
wmove,23
wprintw,24
wrefresh,24
wscanw,26
wstandend,24

Index Cominued

wstandout, 24

-49-

Revision History

Rev Date Comments

A 15 May 1985 First release of this Programmer's Reference Manual in
the Sun documentation package.

B 15 February 1986 Second release of this Programmer's Reference Manual
in the Sun documentation package. Two examples pulled
because they didn't work.

Notes

Notes

Notes

Notes

Notes

